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A detailed study of the Couette-Taylor system with axial flow in the range of Reynolds number Re up
to 4.5, which is characterized by the propagating Taylor-vortices (PTV’s) state, is presented. Two
methods to measure the convective instability line are described. Comparative studies of the PTV’s in
the absolutely and convectively unstable regions are given. It was found that at Re <1 the PTV’s appear
first at the outlet at the absolute instability transition. At Re> 1 the PTV’s are also sustained in the con-
vectively unstable region, but the properties of the PTV’s in the absolutely and convectively unstable re-
gions differ distinctively. In both regions the PTV’s are characterized by the existence of an interface
separating the pattern state from the Couette-Poiseuille flow. The interface is stationary in the absolute-
ly unstable region and fluctuates in the convectively unstable region. The distance from the inlet to the
interface changes as both control parameters € and Re are varied, where € is the distance from the con-
vective line. This dependence is, however, different in both regions. In the absolutely unstable region
the healing length is scaled with the PTV’s group velocity at all values of € and Re, and diverges at the
absolute instability transition line. In the convectively unstable region the healing length does not obey
the general scaling but is about inversely proportional to €& The most distinctive difference in the PTV’s
behavior in the two regions is a different sensitivity to noise. A time-dependent spatial profile of the
PTV’s leads to a broadband power spectrum of the velocity in the convectively unstable region near the
outlet. The PTV’s velocity power spectrum in the absolutely unstable region is, on the other hand,
noise-free. The different sensitivity to noise was used as an experimental criterion to locate the absolute
instability line for Re> 1. The wave-number selection is also found to be different in both regions. Asa
result, we concluded that the PTV’s in the convectively unstable region are noise-sustained structures
(NSS’s) which were recently considered theoretically and observed in numerical simulations. The selec-
tive spatial amplification of an external noise and the characteristic dependence of the healing length on
the control parameters and on the aspect ratio confirm our suggestion that the mechanism of NSS gen-
eration is a selective spatial amplification of a permanent noise at the inlet. An interaction of the noise
with the NSS’s leads to a noise modulation of the PTV’s velocity.
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I. INTRODUCTION

The Couette-Taylor system has been traditionally used
as a model system for the study of hydrodynamic instabil-
ities and patterns formation in closed systems. Recently
the Taylor system has become the focus of new interest as
the application of a through flow in addition to the rota-
tional flow has made it a useful system to study instabili-
ties and the spatiotemporal dynamics of patterns in open
flows. Two subjects, which appear to be significant for
the formation and stability of patterns in open flow sys-
tems, are described in this paper. These subjects are the
relation between absolutely and convectively instability
conditions, and the role of noise in pattern formation in
the convectively unstable region.

The distinction between absolute and convective unsta-
ble flows is important in hydrodynamic systems [1-10]
and particularly in open flow systems. In the convectively
unstable region perturbations grow only in their reference
frame, affecting the basic flow locally but eventually are
“blown out” of the system. In the absolutely unstable re-
gion, however, perturbations grow with time at any sta-
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tionary point and therefore affect the flow everywhere.
Examples of convectively unstable flows are parallel
shear flow in a channel [7], plane Poiseuille flow, and jets
in two and three dimensions [3]. Examples of absolutely
unstable flow are the Rayleigh-Bénard convection, the
Taylor vortex flow, temporal shear flow in a mixing layer
[8], and also the well-known von-Karman vortex street in
the near wake [10].

Although the distinction between absolutely and con-
vectively unstable conditions is well established in hydro-
dynamics [6], the experimental study of the relation be-
tween these instability conditions was very limited until
recently. Previous work [11-17] on the Taylor system
with an axial flow was mainly concerned with the deter-
mination of the onset for periodic patterns in the pres-
ence of the through flow and with the classification of the
various patterns. It was shown that for small Reynolds
number Re the Couette-Poiseuille flow is stabilized and
that the first instability is axisymmetric in the form of
propagating Taylor vortices. Although the onset of
axisymmetric patterns was measured in the small Re re-
gime already by Snyder [11], the distinction between ab-
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solute and convective instabilities and the role of noise in
open flow systems were never taken into account, and
therefore the experimental results are not clearly under-
stood. For example, Snyder reported [11] the measure-
ment of the critical line for the onset of Taylor vortices in
the presence of the through flow. It is not clear whether
this line is the absolute or the convective instability line.
Other numerical and experimental investigations of the
Taylor system with an axial flow were carried out in
wide-gap [16] and narrow-gap [17] geometries. These
studies did not focus, however, on the small Re regime,
Re <4, which was the subject of our studies.

Since the Couette-Taylor system with an axial flow en-
ables one to conduct detailed and well-controlled experi-
ments, it is an advantageous system to study quantitative-
ly the properties of the patterns in the convective and ab-
solute instability regions. The study of this system in
view of the distinction between absolute and convective
instabilities has been found [18-20] to contribute sub-
stantially to the understanding of open flow systems, as
will be shown in this paper.

An important observation that was obtained in this
study, to be presented below, is the existence of patterns
in the convectively unstable region, where no flow other
than the basic Couette-Poiseuille flow is allowed. This
phenomenon was recently encountered in other hydro-
dynamic systems as well [1,2,5,9]. Patterns in the form of
traveling waves with temporal and spatial modulations
were observed in the convectively unstable region in
thermal convection of binary mixtures [2] and explained
[22] as the result of a reflection from the lateral boun-
daries. Whereas reflection is important in closed systems,
it turns out to be not very significant for open flow sys-
tems. When, however, a permanent noise exists in the
system, it can lead to noise-sustained structures in the
convectively unstable region in a process of a continuous
spatial noise amplification. In numerical simulations of
the complex Ginzburg Landau (CGL) equation with a
permanent noise source at the inlet, noise-sustained struc-
tures have been observed [1] in the convectively unstable
region. These structures were shown to exhibit a unique
wavelength that was selected out of the uniform spectrum
of the white noise at the inlet.

Recently the Taylor system with an axial flow has been
shown [18-21] to be a paradigm to study the effects of
noise in the convectively unstable region, as will be
shown in this paper.

The paper is organized as follows. The theoretical
background and predictions are presented in Sec. II. The
experimental setup is described in Sec. III. The following
sections present the experimental results. First the deter-
mination of the convective instability line is discussed
(Sec. IV). Then the experimental observations referring
to the propagating Taylor vortices (PTV’s) state in the
absolutely unstable region are described: the spatial
properties and the wavelength behavior of the PTV’s
state are presented (Sec. V). We discuss then the noise-
sustained structures in the convectively unstable region
and the mechanism for their generation and describe the
experimental determination of the absolute instability
line (Sec. VI). Section VII summarizes the results.

II. THEORETICAL CONSIDERATIONS

The Couette-Taylor system with an axial flow is
comprised of two concentric cylinders which can be ro-
tated about their common axis and a superimposed
through flow in the axial direction. We have been study-
ing a system in which the outer cylinder, of radius R, is
at rest. The inner one, of radius R, =nR,, is rotated
with angular velocity . A fluid of kinematic viscosity
v=u/p is contained in the annular region between the
cylinders.

One control parameter of the system which governs
the rotatory motion is the Taylor number, defined as
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where d =R, —R,. An application of a through flow in
the axial direction provides a second control parameter
which is defined as the Reynolds number of the through
flow Re=0d /v, where U is the averaged velocity of the
axial flow.

The equations governing the motion of the fluid are the
Navier-Stokes equations for the velocity field
U=(U,,U,,U,), where r, 6, and z are the radial, azimu-
thal, and axial coordinates, respectively,

9?+wvm=—%w+wm, 2)

and the continuity equation
V-U=0. (3)

At small T the flow is stable and axisymmetric, and can
be calculated from the above equations. The solution is a
superposition of the circular Couette-Poiseuille flow and
the axial Poiseuille flow

U,=0, Uygr)=Ar+B/r,
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A, B are constants that are determined by the no-slip con-
ditions on the walls and are given by
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In the absence of a through flow a transition to a spa-
tially stationary periodic pattern—the Taylor vortex flow
[23]—occurs as T is increased above a certain critical
value T,. The Couette-Taylor system without through
flow is reviewed elsewhere [24].
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The superposition of a through flow, with a relatively
small Re value, makes the Taylor vortices drift down-
stream, and the flow takes the form of PTV’s. For large
enough Re other periodic patterns are manifested in the
system [11,13,14].

In the following we will use the reduced Taylor num-
ber

T—To
Ty

=(Q_ﬂo)/ﬂo )

€=_l.
2

as the rotatory control parameter, where (1, is the critical
rotation speed for the onset of vortices without through
flow, corresponding to the Taylor number T,. €.(Re)
denotes the critical value of € for the onset of PTV’s in
the presence of axial flow at some value of Re.

The Couette-Taylor system with axial flow can be
modeled by the CGL equation

Tl A+SA)=a1+icy) A +EX1+ic,) A"
—g(1+ic,)| 4124 . (5)

The coefficients of the equation for p=0.75 are [20,25]
(up to very small correction due to Re) 73=0.0379,
2=0.0725, S=1.23Re, and g is of order unity [26].
The complex coefficients are very small and can be
neglected. The exact values of the coefficients of the
CGL equation are given in Appendix A. € is the distance
from the convective line, defined as

Q—Q.(Re) (e—¢,)

CT0.Re) (+e,) ©

where Q_(Re) is the critical rotation speed in the presence
of an axial flow at some value of Re.

Conditions for convective and absolute instability

Consider a small spatially localized perturbation of a
stationary state of some hydrodynamic system. The per-
turbation can be developed in time according to three
possible scenarios [6]. If the state is absolutely stable, the
perturbation will decay in time in any frame of reference.
If the state is absolutely unstable, the edges, or leading
fronts of the perturbation, move in time in opposite direc-
tions, and therefore the perturbation will grow at any
given stationary point. If the state is convectively unsta-
ble the edges of the perturbation will move in the same
direction, and therefore the perturbation will grow only
in a moving frame of reference, but will decay at any
given stationary point. In the absolutely unstable case,
the perturbation will grow and saturate (because of non-
linear effects) to form a pattern.

The conditions for convective and absolute instability
of a given flow are derived from the analysis of the spatial
and temporal behavior of a perturbation of the flow. The
system becomes convectively unstable when the maximal
temporal growth rate of the perturbation, along a ray of
constant x /t, becomes positive. This transition happens
at T=T_.(Re), or €=€,=0 [1,3,4]. The convective insta-
bility line is therefore defined as the line €.(Re). The con-
vective instability line was calculated [20,25] to be
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€,=0.000381Re?, (7)

for the Taylor system with axial flow.

The linearized GL equation approximates the disper-
sion relation by an expansion to first order in € and to
second order in k—k, where o=w,+iw; and
k =k, +ik; are complex [27]

0=w,+15 (—co+i)e+S(k —k,)
+75 ey —iNk —k,)? .

The condition for the absolute instability can be found
using the dispersion relation [3,4]. Using the conditions
(dw/dk)|k 4p =0 and w;(k,,)=0, where k,,, is found
by the saddle point analysis, one gets

_ '

e 8
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For the parameters of the Taylor system with an axial
flow (see Appendix A) one gets &,=0.00495S52 or
€, =0.007 89 Re.

One realizes immediately a direct analogy between the
expression for the absolute instability line (8) and a front
propagation solution. Indeed, Eq. (8) can be written as

5,=2, 9)

where SS=S7'0€;1/2/(§0\/1+C% ) is a scaled group ve-
locity. The relation (9) is found to be a crucial one in the
problem of the selection of a state behind the front of a
propagating pattern. The mechanism of the velocity and
wavelength selection of a pattern which propagates into
an initially unstable state was identified by the so-called
“marginal stability conjecture” [28]. The wave number
of the pattern behind the front is selected such that [29]

k=ce'?/&,, (10)
where

_ (+c)?+(1+¢3)!72

(cl_CZ)

c

¢, and c, are the coefficients of the CGL equation. ¢ can
be approximated for small ¢; and ¢, as ¢ =(c;+c¢;)/2.
The scaled group velocity of the selected state is given by
Eq. (9). This criterion is obtained from the requirement
that the propagation velocity of the front separating the
stable and the unstable states is equal to zero [28,29].

The transition line between the convective and absolute
instability regimes in the Couette-Taylor system with axi-
al flow can be viewed as the line defining the marginal
stability of the front separating the Couette-Poiseuille
state and the PTV’s. The front is stable if it outruns any
perturbation [30], namely, if the perturbation velocity is
smaller than the front velocity. Convective or absolute
instability is then considered with respect to the front. In
the absolutely unstable regime the perturbations grow
ahead of the front, and thus the front becomes unstable
and advances into the interior of the system. As a result,
a steady pattern in the form of the PTV’s is observed in
the column. At the convectively unstable regime, on the
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other hand, the front is stable, and because it is moving
downstream the PTV’s are convected away with the
front. On the transition line between the convectively
and absolutely unstable regions the propagation velocity
of the front is zero. The PTV’s state is therefore convec-
tively unstable for S; >2, and it is absolutely unstable for
S, <2.

III. EXPERIMENT

The general scheme of the experimental setup is shown
in Fig. 1. It consists of the Taylor system, which is com-
posed of the Taylor column [32] and the axial flow
modification, and the laser Doppler anemometer, which
was the main measuring tool. Two columns were used in
the experiments, with the aspect ratios '=L /d =54 and
48 (L is the length of the working-fluid region), and radii
ratios n=r, /r,=0.707 and 0.77, respectively. The radii
of the outer cylinders were R, =2.685 and 4.100 cm, and
the radii of the inner cylinders were R, =1.900 and 3.150
cm, respectively. The overall deviation from horizontali-
ty along the inner cylinder was about 0.02 mm, and the
eccentricity was below 0.07 mm. The outer cylinders
were made of perspex and were polished to obtain optical
transparency.

The column was installed horizontally and was

reservoir

flow meter

LDA water bath

} pump O

driver

motor

N|
translational

motor F}————‘ |, stage
f_;_LI detector

driver

filter&amp.

tracker

counter
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FIG. 1. The experimental setup. LDA stands for the laser
Doppler anemometer.

modified by an axial flow arrangement. The axial flow
was driven by gravity in a closed loop, with the use of a
pump. The average flow rate was measured by precise
flow meters in the range from 2X 1073 to 1.5 cm/s with
an accuracy of 1X 10~ % cm/s. In order to make the axial
flow as uniform as possible in the azimuthal direction, the
fluid passed an inlet chamber before entering the working
region between the cylinders. The inlet chamber was
constructed with flow directors and a stainless-steel net
with (0.25X0.25) mm? mesh size. The net was used as
nonrotational lateral boundaries at both sides of the
column. The working fluid was a mixture of glycerol in
water. Typically, the fluid had a kinematic viscosity of
v=3.0cS, which corresponds to a mixture of 32.4% by
volume of glycerol in water at 22 °C. The viscosity of the
fluid was determined from tabulated data [31] and was
checked by measurements with a commercial viscometer
(Haake CV-100). The temperature of the fluid was main-
tained constant to a level of 25 mK. The temperature
stability was achieved by circulating water in a jacket
around the column by the use of a commercial
refrigerator-heater circulating system and by stabilizing
the room temperature to within +1°C. Before entering
the column, the fluid passed through a copper tube which
was immersed in the circulator water basin, so that the
axial flow was stabilized to the desired temperature at the
inlet. The temperature was measured by Fenwal regulat-
ing thermistors, with a sensitivity of about 4 kQ/°C.

The angular velocity of the inner cylinder was con-
trolled by a stepper motor via a semirigid coupling. The
motor was driven by a homebuilt electronic driver which
is computer controlled. The accuracy of the averaged an-
gular speed of the inner cylinder is better than +0.05%.

Optical methods

The main measuring system was the laser Doppler
anemometer (LDA), which enables an absolute and accu-
rate measurements of the axial component of the velocity
U,. The LDA was built according to a design of Hein-
richs et al. [33]. The optical setup in our system was the
following. A 5-mW He-Ne laser is split into two beams
with each beam passing through a Bragg cell. The Bragg
cells shift the frequency of the laser radiation by 40.0 and
40.1 MHz, respectively, and these shifted components are
then brought to a focus at their intersection point within
the working fluid. The working fluid (a water-glycerol
mixture) is seeded with 0.93-um-diam polysterene latex
spheres of concentration 4.2 pg/cc (6.5 particles/cc).
This concentration exhibits an optimal signal to noise ra-
tio, as was found in preliminary experiments. A sphere
traveling with the local fluid velocity scatters light whose
intensity is modulated at a frequency of 100
kHz+v,/Ax, where Ax =5 um is the fringe spacing.
The light, which is scattered at a small angle (less than
10°), is collected using a Nicor 50-mm focal length lens
which images the intersection volume on to a 400-um-
diam aperture. A phase-locked loop is used to track the
instantaneous frequency of the current of a photodetector
which is produced by the optical signal. The output of
the tracker feeds a computer controlled counter which
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determines the frequency of the signal. The deviation of
the modulation frequency from 100 kHz is proportional
to the local axial velocity of the fluid. The LDA system
is mounted on a Daedal translator which is controlled by
a position controller.

In a complementary technique to the LDA, a flow
visualization of the entire column was provided by add-
ing 1% Kalliroscope solution [34] to the working fluid.
An image of the column was obtained by means of a vidi-
con camera (RCA Model 2014x). The images were digi-
tized and transferred to the computer for analysis, using
an eight-bit frame grabber (Data Translation Model DT-
2851) with a 512 X 512 spatial resolution.

IV. MEASUREMENT
OF THE CONVECTIVE INSTABILITY LINE

A quantitative study of the system requires at first a
precise determination of the convective instability line,
which is denoted by

Q.(Re)—

€.(Re)= o

Here Q. (Re) is the critical rotation value for the onset of
PTV’s in the presence of the axial flow at some value Re
and (), is the critical rotation value for the stationary
case Re=0. Below this line the Couette-Poiseuille flow is
absolutely stable, and no patterns exist. Above it, in the
convectively unstable region, perturbations grow only in
the comoving frame.

The measurement of the convective instability line was
conducted by two methods. The first method [18] is
based on the extrapolation of {2 (Re) from measurements
of the PTV’s velocity amplitude down to zero value. The
velocity amplitude was measured as a function of ( at
various Re values, in the absolutely unstable region. The
second method is the tracing of the spatial growth of an
induced external perturbation.

A. Amplitude vs ) measurements

A simple method to determine the convective instabili-
ty line is to extrapolate measurements of the PTV’s veloc-
ity amplitudes as a function of the control parameter ()
to zero amplitude values at various through-flow veloci-
ties. These measurements not only provide us with a
method to obtain €,(Re), but also give us some insight
with respect to the determination of the absolute instabil-
ity line, as will be shown below.

The measurement procedure was the following. For a
given Re value, ) was increased quasistatically from
below. At each ) the axial velocity was measured near
the outlet as a function of time with the LDA and the ve-
locity amplitude which corresponds to the periodic com-
ponent of the flow was deduced from a fit to the function
A sin(wt +¢)+V,. (V corresponds to the through-flow
velocity.) Before measuring we waited sufficient time in
order to let the convective patterns to advect away. This
waiting time was typically several longitudinal traverse
times 7=(I"/Re)7,, where T=L /d and 7,=d?/v is the
viscous diffusion time.

A plot of velocity amplitude vs. € is given in Fig. 2 for
the case without axial flow (Re=0) and for the case
where a small axial flow is present (Re=0.61). The ex-
perimental data points are shown for Re=0 (open circles)
and Re=0.61 (solid circles). The solid curve denotes the
amplitude equation solution for the stationary (Re=0)
system. In order to obtain (), the rotation speed that
corresponds to the onset of the Taylor vortices in the sta-
tionary system, the data for the amplitude as a function
of (1 was fitted to the GL equation of the Taylor system
without axial flow. The procedure for the onset deter-
mination of the Taylor vortices in the stationary system
was suggested by Dominguez-Lerma, Cannell, and
Ahlers [32]. The theoretical critical Taylor numbers for
the onset of the Taylor vortices without axial flow were
interpolated from the calculations of Dominguez-Lerma
[35] and were found to be T;=4424.2 and 4116.0 for the
aspect ratios 77=0.707 and 0.77, respectively.

Upon the application of even a small through flow to
the system, the curve of amplitude vs € exhibits a qualita-
tive change, as is seen in Fig. 2. First, the rounding at
small €, which is induced by finite size of the system,
disappears. This fact suggests that the Ekman vortices
near the boundaries do not affect the PTV’s. This sugges-
tion will be examined in more detail later. Second, the
velocity amplitude becomes nonzero for a finite value of
€>0 (which is €=~0.004 for the case presented in the
figure). The jump in the amplitude demonstrates the fact
that the system is convectively unstable for small values
of €. In the convectively unstable region the PTV’s are
advected away from the system and therefore zero veloci-
ty amplitude is measured in the stationary laboratory
frame. The value of e=¢, for which a transition in the
velocity amplitude occurs, corresponds to a transition to
the absolutely unstable region. €, which is plotted below
vs Re in Figs. 15 and 24, was found to coincide with the
predicted value of the absolute instability line for Re < 1
and was found to strongly deviate from the absolute in-

1
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g - L0.08
3 L
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&)
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&0.04 A |
| -0.02
0.00 0.00
~0.01

FIG. 2. Amplitude of the axial velocity vs € for two sets of
data, measured near the outlet boundary: open circles without
through flow, and solid circles for Re=0.61 (velocity values on
the left- and right-hand sides, respectively). The solid line is a
fit to the GL equation for the stationary system. 7=0.707.



1296

stability line for Re > 1. It will be shown below that this
discrepancy can be explained by noise-sustained struc-
tures which are manifested in the system for Re > 1. It
is our interest here though to use the velocity amplitude
vs () data of the PTV’s in the absolutely unstable region
in order to deduce the convective instability value e,.
This was carried out by fitting the data of the velocity
amplitudes with the solution of the GL equation

EA—gA3=0, (11)

which is 4 =\/€/g. The spatial derivatives in Eq. (11)
are neglected because the measurements were carried out
in the point which is located far enough from the lateral
boundaries so that the flow was spatially uniform in the
vicinity of the measuring point. The temporal derivative
is neglected because we let the transients to die out before
taking the measurement.

The critical value for the onset of vortices, €.(Re), is
obtained from the fit. This procedure was carried out for
several values of Re. The extrapolation of €,.(Re) by this
method becomes, however, less accurate as Re becomes
larger due to the extrapolation involved in the fitting pro-
cedure.

B. Tracing a generated perturbation

A method which directly measures the convective in-
stability line is the generation of a perturbation at the in-
let boundary and detection of the pulse amplitude near
the outlet. This method for the Couette-Taylor system
with a through flow was first proposed by Babcock,
Ahlers, and Cannell [20] and was proved to be more ac-
curate than the method that was described above. The
perturbation can be generated mechanically by either an
abrupt rotation of the inner cylinder, as was done by Bab-
cock, Ahlers, and Cannell [20], or by a sudden change of
the inlet boundary location, the method used by us. We
generated a pulse by moving the inlet boundary forward
and backward at a distance of about 0.5d. The duration
of the imposed motion was about 10 s, below the viscous
diffusion time of the system 7,=30.1 s. We generated
the pulse by using a device that was built for this pur-
pose, which was controlled by a stepper motor. The
pulses were checked to be reproducible. A propagation of
a generated perturbation is demonstrated in Fig. 3. The
pulse is initially confined to within one or two vortex
wavelengths, and after a short response time of the sys-
tem the perturbation spreads spatially and grows in am-
plitude. In order to determine €, the pulse amplitude was
measured with the LDA as it passed the point z =40d
from the inlet. A typical plot of the pulse amplitude in
time is presented in Fig. 4, for Re=3.41 and €=0.0164.
By reducing €, smaller and smaller amplitudes could be
detected. At small € the signal was obscured by the
noise. The signal was observed by a peak in the power
spectrum, after Fourier transforming the data. The onset
of convective instability €.(Re) was determined to be the
value of € for which the power spectrum exhibited no
peak.

The determination of €, can also be obtained by
measuring the spatial growth of the pulse amplitude. A
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FIG. 3. The growth of a perturbation in the convectively un-
stable region. The pulse was generated by a sudden movement
of the inlet boundary back and forth. Re=6.0 and €=0.0477.
n=0.77.

perturbation, generated at the inlet boundary, is
amplified and expands during the propagation down-
stream. Assuming an initial Gaussian perturbation,
Fo(x)= A exp(—ax?), it can be shown [1] that the subse-
quent evolution of the perturbation amplitude is given by

exp(&/7y)t
[1+4a(&5 /7o)t ]!

Xexp{ —al(x —St)*/[1+4a(&3/mo)t]} ,  (12)

F(x,t)=4

where 7, S, €, and &, are the parameters of the GL equa-
tion. Measurements of the pulse amplitude as a function
of time and position, and fitting the data to a Gaussian
function, yield therefore information about the growth
rate of the perturbation. In order to extrapolate €, one
has to carry out these measurements for several values of
, the rotation speed of the inner cylinder.

The measurement was carried out as follows: for a

—0.02 A

—0.06 A

VELOCITY (cm/s)

|
o
o

1

o ' 10 ' 20
TIME (units of Ty)

FIG. 4. Velocity vs time for a single pulse in the convectively
unstable region. The pulse was generated at the inlet, and was
observed at z =40d. Re=3.41 and €=0.0164. =0.77.

-0.14
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given Re and Q a pulse was generated at the inlet, and
the LDA monitored the axial velocity in time at a fixed
position. This procedure was repeated at successive dis-
tances from the inlet. Figure 5 shows a typical curve of
the pulse’s velocity amplitude as a function of position,
which was used in the determination of €,. Each data
point corresponds to one experiment in which a single
perturbation was generated, the axial velocity was
recorded in time, and the maximal amplitude of the re-
sulting pattern was evaluated. The natural way to evalu-
ate the maximal amplitude of the pulse is to fit it to the
function (12). This procedure, however, was not very re-
liable for pulses of a small amplitude, because of a poor
signal-to-noise ratio. We therefore increased first the
signal-to-noise ratio by autocorrelating the signal and de-
duced the maximal amplitude of the pulse from the zero-
lag value of the autocorrelated signal. The details of this
procedure are described in Appendix B.

Figure 5 demonstrates the fact that the amplitude A4 of
the pulse grows spatially according to 4 (x)= A exp(ox)
where 0 =€/(7,S) and A, is the initial amplitude of the
perturbation. The solid line on Fig. 5 is an exponential fit
from which the spatial growth rate o can be obtained.

The growth rate o as a function of the rotation speed
Q was deduced from similar measurements that were car-
ried out for different values of (), at the same Re=4.72.
The plot of o as a function of Q is shown in Fig. 6 for
Re=4.72. The intersection of the fitted line with the Q
axis determines the critical rotation speed. We find
0,=0.8499, a value which corresponds to
€.(Re)=8.30X 1073, in very good agreement with the
predicted value €,(Re)=8.49X 1073, The parameter 7,
can also be deduced from the fit to the data in Fig. 6. We
find 7,=0.03271+0.0024 (the theoretical value is
70=0.0379).

As a result of the measurements the convective insta-
bility line was obtained, and it is shown in Fig. 7. The
solid line is the theoretical line €,=0.000381 Re? ob-
tained from the linear stability analysis [20,25]. The

Lol
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38

14 22 30
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FIG. 5. The zero-lag amplitude of the autocorrelated pulses
vs the distance from the inlet. (Re=4.72 and €=0.0216.)

n=0.77. The fit gives o, the spatial growth rate, which is used
in the determination of €.(Re) (see text).
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FIG. 6. The spatial growth rate o vs the angular velocity of
the inner cylinder, for Re=4.72. The intersection of the linear
fit with the Q axis gives . =0.8499 Hz (the predicted value is
0.8501), which determines €,. 7=0.77.

0.855

points correspond to the data. The solid circles corre-
spond to the data points obtained by measuring the pulse
amplitude as a function of time near the outlet boundary.
The open circle, depicted on the graph for Re=4.72, cor-
responds to the measurement of the spatial growth of the
perturbation. It is seen that the different measurement
procedures yield similar results. The agreement between
the experimental data and the theoretical line is very
good.

The open squares correspond to the data points ob-
tained from the extrapolation of the fit to the amplitude
equation, as described above. Most of the data points
agree, within the error bars, with the theoretical line.
For three data points with relatively larger values of Re a
deviation from the theoretical line is observed. This devi-
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FIG. 7. The convective instability line. The solid line is the
theoretical curve. The solid circles are the data obtained from
the experiments with pulse generation, for 7=0.77. At
Re=4.72 the data obtained by observing the pulse amplitude at
the outlet (solid circle) is plotted together with the data ob-
tained by analysis of the spatial growth (open circle). The open
squares are the data obtained by extrapolation with the GL
equation, for 7=0.707.

N
N



1298

ation from the theoretical line can be explained by the
fact that the determination of €. was deduced by an ex-
trapolation procedure. At larger Re the extrapolation be-
comes less accurate, and therefore less reliable, because
nonzero velocity amplitudes are first observed at larger €
values.

After verifying experimentally the convective instabili-
ty line we now turn to the discussion of the properties of
the PTV’s state. In the next section we will describe the
PTV’s state in the absolutely unstable region. The spatial
properties of the PTV’s and the wavelength behavior will
be presented.

V. PTV’s IN THE ABSOLUTELY UNSTABLE REGION

A. Spatial properties

The PTV’s in the absolutely unstable region are
characterized by a spatial variation of the amplitude.
The PTV’s state has an amplitude profile with a charac-
teristic healing length L,, defined as the length at which
the velocity amplitude reaches a certain part of its max-
imum value. L, is found to increase as € is reduced, as il-
lustrated in Fig. 8, where the scaled velocity amplitude of
the PTV’s (amplitudes are scaled with €'/?) is plotted as a
function of the distance from the inlet for different values
of € and at a fixed Re=1.77. On the other hand, at a
fixed value of € the healing length increases with Re. The
profiles in Fig. 8 correspond to states in the absolutely
unstable region. A complementary picture of the spatial
profile in the absolutely unstable region, taken with the
vidicon camera, is presented in Fig. 9. In this figure the
intensity of the optical signal is plotted as a function of
axial position, at successive time intervals. The solid line
across the plot depicts the position of the interface be-
tween the PTV’s on the right and the Couette-Poiseuille
flow on the left. The figure clearly demonstrates again
the fact that the interface in the absolutely unstable re-
gion is stationary.

In order to determine the interface position several
methods were used. One method that was used in the
analysis is the demodulation of the optical signal in order
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FIG. 8. Profiles of PTV’s velocities [ A4 (ro/go\/g)] vs dis-
tance from the inlet in the absolutely unstable region, at
Re=1.77 and €=0.042 (open squares), €=0.034 (solid squares),
€=0.030 (diamonds). 7=0.707.
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FIG. 9. Space-time contour plot of the optical signal intensi-
ty along the column for PTV’s in the absolutely unstable region.
The solid line across the plot defines the interface between the
Couette-Poisseuille and PTV’s states (€=0.034, Re=22,
r,=d*/v). n=0.77.

to eliminate the fast oscillations and to obtain the profile
envelope. The interface position was determined as the
point that corresponds to a value of the demodulated am-
plitude larger than some specified threshold. We used in
the analysis also root-mean-square (rms) and integral
methods, namely, the threshold was set to be a specified
fraction of either the rms value of the velocity of the
PTV’s near the outlet or a fraction of the integral over
the rms velocity along the column. The latter
specification of the threshold was mainly used because it
is less sensitive to spurious intensity variations.

Profiles of the velocity amplitudes in the absolutely un-
stable region were also observed in numerical studies of
the Rayleigh-Bénard system with a through flow [36]. It
was found that the healing length L, increases as € is re-
duced and diverges at the absolute instability line. The
divergence of L, was used as a criterion for the transition
from the convective to the absolute unstable regime.
A general scaling of the healing length [, =€'/’L, / &, as
a  function of a  scaled group  velocity
S, =S(1y/E)[&1+c?)] 7/ was suggested and verified
numerically [36]. At S,=S*=2, which corresponds to
the absolute instability line, /; diverges.

This criterion was found to be valid in our system only
for small Re, namely, for Re <1 [18]. Figure 10 presents
the results of the measurements of /; vs S for different
values of Re in our system. The data of different Re <1
fall all on one curve that obeys

1, =1.19(8*—S,)"%°. (13)

The divergence of the healing length at S;* =2 is in agree-
ment with the suggested criterion for the transition to the
absolutely unstable region. The divergence of [, can thus
be taken as an experimental definition of the absolute in-
stability line, for Re <1. At Re> 1, however, the above
criterion is not satisfied as one finds finite values of /; at
S;,>2. The behavior of I/, at Re>1 manifests a
discrepancy with the theoretical predictions which were
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FIG. 10. The scaled healing length I, vs the scaled velocity
S,. Circles, Re=0.56; triangles, Re=0.86; diamonds, Re=1.0;
squares, Re=1.25. The solid line is a fit which gives
I,=1.19(S*—S,)" %5 5=0.707. ‘

drawn from the study of the Rayleigh-Bénard system
with an axial flow [36]. This discrepancy results from the
fact that patterns are sustained in the convectively unsta-
ble region, as will be shown below. We note that the data
at Re=1.25>1 are also included in Fig. 10.

Ekman vortices

We would like to point out here that so far we present-
ed and discussed only the oscillatory component of the
velocity field which corresponds to the periodic com-
ponent of the measured signal. The spatial distribution
of the oscillatory component of the velocity amplitude
originates from the fact that at the lateral boundaries this
component of the velocity amplitude is zero. It is an
essential ingredient of the theory based on the GL equa-
tion for the oscillatory component of the velocity ampli-
tude [36]. On the other hand, the full velocity field near
the lateral boundaries is considerably more involved. Be-
sides the oscillatory velocity amplitude, which plays the
role of the order parameter of the bifurcation, there exists
also an axial component of the velocity field due to the
presence of an axial flow, and constant radial and axial
components of the velocity field due to boundary effects.
The latter causes the existence of the Ekman vortices in a
classical Couette-Taylor flow. Of course simple one-
component theory does not take into account these de-
tails. However, in order to complete the picture of the
boundary conditions for the full velocity field and to un-
derstand an interplay and coexistence between constant
radial and axial components of the velocity field, on the
one hand, and the oscillatory velocity, on the other hand,
we will describe our observations of the full velocity field
in detail.

The application of a through flow to the Taylor system
turns the system into an open one, and therefore one
might think that the Ekman vortices, which are generat-
ed due to the presence of the rigid lateral boundaries [24],
are washed away as soon as the axial flow is “switched

on.” It was found that this is not the case, as is demon-
strated in Fig. 11. The velocity field of the Ekman vor-
tices, composed of both the oscillatory component and
the stationary component (which is obtained from the
averaged velocity), is shown in this plot. The vertical
lines denote the amplitude of the oscillatory component
of the velocity field and the solid circles denote the aver-
aged velocity values at every spatial point. Figure 11
demonstrates that the Ekman vortices modulate the oscil-
latory component of the velocity. The effect of the
through flow on the Ekman vortices is illustrated by the
plots on Fig. 12. In this figure the full velocity field near
the inlet boundary is presented for a fixed Re=0.45 and
different € values (€ is increased from top to bottom). It
is observed that the Ekman vortices always underly the
flow pattern. The oscillating amplitude is decreased, and
the shape of the vortices becomes less pronounced, as € is
reduced. The vortices, however, are not washed away by
the through flow even for negative e. Ekman vortices
were observed for all Re <4, a value at which a new mode
of stationary spirals replaces the PTV’s state. The Ek-
man profile for Re=3.0 (¢=0.054) is shown in Fig. 13.
This figure shows that the spatial modulation is still ob-
served for Re=3.0.

B. Wavelength measurements

The analogy between the PTV’s state and a propaga-
ting front led us to suggest that the PTV’s wavelength is
uniquely selected according to the front propagating
mechanism [18]. An additional motivation to study ex-
perimentally the wavelength behavior came from the re-
sults of numerical simulations that were applied to the
Rayleigh-Bénard system with an axial flow [36]. The
simulations showed a wavelength selection, so that the
wavelength of the convection rolls was dependent only on
the control parameters of the system, but was insensitive
to the initial conditions.

The wave number of the PTV’s in our system was mea-
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FIG. 11. The Ekman vortices in the presence of axial flow.
The time-averaged axial velocity component (circles) and the ve-
locity amplitude of the PTV’s (bars) vs distance from the inlet
for Re=0.45 and €=0.0125 (measured at 0.2d from the inner
cylinder). 7=0.707.
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FIG. 12. The full velocity field near the inlet boundary.
Re=0.45 and €=0.1505, 0.0545, 0.0125, and —0.0035 (bottom
to top). n=0.707.

sured using the vidicon camera. The wave-number mea-
surements were carried out after waiting sufficient time
[several longitudinal traverse times 7=(I/Re)r,] to al-
low the decay of wavelength variations along the column
and after it was verified that no axial wavelength distribu-
tion was present. The bulk wave number of the PTV’s
was found to be uniquely selected by the through flow.
The wavelength was found to be independent of the as-
pect ratio, initial conditions, and history of the system.
An initial wave number that was prepared at Re=0 was
changed to the selected wave number after the through
flow was “turned on.” The wave-number selection and
its Re dependence is shown on Fig. 14. The open squares
on the plot depict the wave number that was selected for
the various values of Re. The solid symbols on the plot
demonstrate the wave-number selection process. The ini-
tial wave number was prepared at Re=0 by quenching
from the wavy mode state. Examples of three different
initial wave numbers are shown by the different solid
symbols (triangles, squares, and diamonds) at Re=0. The
flow was then set for Re=0.9, and after sufficient time
the different wave numbers collapsed to a single value.
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FIG. 13. The axial velocity vs distance from the inlet for
Re=3.0and €=0.027. n=0.707.
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FIG. 14. The wavelength of the PTV’s vs Re. Different sym-
bols (diamonds, triangles, solid squares, and open squares) cor-
respond to different initial states prepared with different k at
Re=0. (Open square at Re=0 corresponds to k.) Dash-
dotted, dotted, and dashed lines show the k-number selection
process after the axial flow was applied. Inset: the wave num-
ber corresponding to states on the transition line, vs €,. The
solid line is a fit to the data with Re<1. =0.707.

The flow was then increased to Re=1.19, and a different
wave number was selected. The wave number is in-
creased with Re, as was found also for the Rayleigh-
Bénard system with an axial flow [36]. No dependence of
the wavelength on € was observed.

The analogy between our system and the front propa-
gation for Re <1 suggests that the wavelength selection
mechanism behind the front is similar to the wavelength
selection in our system on the transition line S, =2. The
selected wave number behind a propagating front was
calculated [29] to yield k(§,)—k.~(c,+c, )eL2 /2¢,,
where ¢, and c, are coefficients of the CGL equation (5).
Since ¢, and c, are proportional to Re in the first approx-
imation (see Appendix A), we can write ¢, +c,=n Re.
Therefore

k—k, ~n(g, /7)) . (14)

The wave number of the states on the transition line, i.e.,
with values of € and Re that satisfy S, =2, is presented in
the inset of Fig. 14 as a function of €,(Re). Note that the
inset does not imply that there is a dependence of k on E,
but on €,, which is related to Re via the expression
S,=2. The data in the inset confirm qualitatively the
linear scaling of k with €,, predicted by Eq. (14) for
Re < 1, the regime of Re where the analogy with the front
propagation holds. The experimental value of n, deduced
from the slope for Re < 1, is n =0.44. This value is, how-
ever, about an order of magnitude larger than the
theoretical value n =0.028.

We can conclude therefore that a wavelength selection
exists for our system and that the mechanism of the front
propagation can probably qualitatively explain the wave-
length selection only for Re < 1. The mechanism for the
wavelength selection for the noise-sustained structures
(NSS’s) in the regime Re > 1 is different and is unknown.
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C. Onset of patterns

The initial assumption that PTV’s are sustained only in
the absolutely unstable region was suggested to be used as
a criterion to locate experimentally the absolute instabili-
ty line. If this assumption is correct, then the onset of
patterns determines the absolute instability line. As will
be shown here, this is the case only for Re < 1. In order
to determine the onset of patterns we used the procedure
that was described in Sec. IVA. The amplitude of the
PTV’s was measured as a function of € for a given Re,
after waiting sufficient time to let convectively unstable
patterns advect away from the system.

The resulting velocity vs € plot was presented in Fig. 2
for Re=0.61. The € value above which PTV’s are main-
tained in the system and below which no patterns are ob-
served determines a point on the absolute instability line
for Re<1. This € value will be denoted by €,. A plot of
€, as a function of Re, for the aspect ratio of I'=40, is
shown in Fig. 15. The solid line is the theoretical abso-
lute instability line given by Eq. (8). The dashed line is
the convective instability line given by Eq. (7). Region
ITI, above the absolute instability line, is the absolutely
unstable regime. The regime between the absolute and
the convective instability lines is the convectively unstable
regime. It is divided into two regions. In region I no pat-
terns are observed and in region II patterns are sustained
in the system. The circles denote €, for the onset of pat-
terns observed. Figure 15 clearly demonstrates that the
method described above [18] to measure the absolute in-
stability line is correct only for small values of Re, name-
ly, for Re<1. For Re> 1, €, values were found [18] to be
smaller than €,, the absolute instability value. This devi-
ation means that patterns are observed in the ‘“forbid-
den” convectively unstable region, contrary to the
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FIG. 15. The values of € for the onset of patterns (circles) vs
Re, measured at L =40d. The dashed line is the convective in-
stability line. The solid line is the theoretical absolute instabili-
ty line above which the flow is absolutely unstable (region III).
The data points determine the boundary between region I,
where no patterns are present, and region II, where PTV’s are
observed. 7=0.77.

theoretical predictions. The existence of patterns in the
convectively unstable region accounts for the discrepan-
cies with the theory as was reflected in the behavior of
the spatial profile and in the wavelength for Re > 1.

It is important to note that the theoretical derivation
of the conditions for the absolute and convective instabil-
ities did not take into account the presence of noise in the
system. In the following sections it will be shown that
the intrinsic noise in the system is responsible for the ex-
istence of patterns in the convectively unstable region.

VI. NOISE-SUSTAINED STRUCTURES
IN THE CONVECTIVELY UNSTABLE REGION

A close examination of the patterns in the convectively
unstable region shows that they exhibit a noisy character
which is not manifested by the PTV’s in the absolutely
unstable region. This noisy character is reflected in two
ways, which are in fact two aspects of the same
phenomenon. The first one is irregular fluctuations of the
interface separating the PTV’s from the Couette-
Poiseuille flow and the second is a broad peak in the
power spectrum.

A noisy character of the patterns in the convectively
unstable region was first revealed by a measurement of
the axial velocity as a function of time in the vicinity of
the interface. Figure 16 shows a typical behavior of the
velocity in time for Re=2.74 and 1.55 [Figs. 16(a) and
16(b), respectively] near the interface. The time series
was taken in region II on Fig. 15. It is seen that the am-
plitude exhibits irregular modulations in time. Note that
the frequency of the modulations is larger for the larger
Re. We will explain this point in Sec. VID. An under-
standing of the amplitude modulations in time was ob-
tained by the study of the temporal behavior of the PTV’s
spatial profile in the convectively unstable region.

(a)

(b)
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FIG. 16. Velocity of the PTV’s vs time in the convectively
unstable region (region II on Fig. 15) in the vicinity of the inter-
face for (a) Re=2.74 and (b) Re=1.55. Note that the amplitude
in (a) is more frequently modulated. [¢=0.0326 (a) and 0.015
(b)]. n=0.707.
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A. Spatial profile

It was found that in the convectively unstable region
the interface between the PTV’s and the Couette-
Poiseuille flow exhibits time-dependent fluctuations, as
demonstrated in Fig. 17. In this figure the intensity of
the optical signal, obtained by the vidicon camera, is
plotted as a function of axial position, at successive time
intervals. The solid line across the plot depicts the posi-
tion of the interface between the PTV’s on the right and
the Couette-Poiseuille flow on the left. The position of
the interface was determined by the methods that were
described in Sec. V.

A measurement of the velocity amplitude along the in-
terface with the LDA is shown in Fig. 18, for Re=2.5
and €=0.03. The measurement procedure was the fol-
lowing: for the given Re and € we measured the axial ve-
locity with the LDA along the column. Since the veloci-
ty amplitude of the PTV’s is modulated in the convective-
ly unstable region, then at every spatial point the velocity
was recorded as a function of time for a period of time
long enough to observe the velocity amplitude modula-
tions. (This period of time was typically 30/f,, where f,
is the PTV’s frequency.) At every spatial point the max-
imum amplitude observed on the velocity time series was
taken to correspond to this point along the profile. Figure
18 shows that the fluctuations of the interface are
reflected in a larger scatter of the data points than the
profiles in the absolutely unstable region (compare with
Fig. 8 in the previous section).

A dependence of the interface position on € for PTV’s
states in the convectively unstable region is shown in Fig.
19, for a fixed Re=3.0. This figure demonstrates the in-
crease of L,, the distance from the inlet to the interface
position, as € is decreased, as was found for the profiles in
the absolutely unstable region (see Fig. 8). The depen-
dence of L, on € in the convectively unstable region for
Re>1 is, however, quite different than what was found
for the absolutely unstable region for Re < 1. Figure 20

TIME (units of Tv)
[

10 J0 30
DISTANCE (units of d)

FIG. 17. Space-time contour plot of the optical signal inten-
sity along the column for PTV’s in the convectively unstable re-
gion (region II on Fig. 15). The solid line across the plot defines

the interface between the Couette-Poiseuille and PTV’s states
(6=0.04 and Re=3.0). n=0.707.
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FIG. 18. The velocity amplitude of the axial velocity in the
convectively unstable region (region II on Fig. 15) as a function
of the distance from the inlet boundary. A typical error bar is
shown. Note the scatter of the data, which is due to the fluctua-
tions of the interface (Re=2.5 and €=0.03. =0.77.)

shows L, as a function of 1/€ for Re=2.7. There is
about a linear relationship between these variables,
whereas a power-law dependence holds for the absolutely
unstable region. Moreover, a general scaling of /; as a
function of S; was shown to exist in the absolutely unsta-
ble region. Such a scaling does not exist in the convec-
tively unstable region. The linear relationship between
L, and 1/€ will be explained below in Sec. VID.

The interface fluctuations in the convectively unstable
region were found to be irregular. As a result, the veloci-
ty amplitude near the interface is not constant but is
rather modulated in an irregular fashion, as shown in Fig.
16 above. The direct connection between the interface
dynamics and the amplitude modulations is demonstrated
in Fig. 21. The interface position in time [Fig. 21(a)] is
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FIG. 19. Space-time contour plots for a fixed Re=3.0, and
different € values, demonstrate the increase in the healing length
as € decreases. €=0.0246, 0.0329, 0.0414, and 0.05 (from top to
bottom). The plotted states correspond to region II on Fig. 15.
7=0.707.
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FIG. 20. The averaged interface position vs 1/€ in the con-
vectively unstable region (region II on Fig. 15). The vertical
bars show the range of the interface fluctuations (Re=2.7). The

solid line is a linear fit to the data. The slope gives ¥y =104.
7=0.77.

compared with the time-dependence of the PTV’s veloci-
ty amplitude near the interface [Fig. 21(b)]. The ampli-
tude in plot (b) was produced by demodulating the optical
signal measured with the camera. The similarity between
the temporal behavior of the interface and the PTV’s am-
plitude is evident.

The noisy signature of the profile suggests that the pat-
terns in the convectively unstable region are noise-
sustained structures. In the absolutely unstable region,
however, the amplitude is constant in time. Therefore, a
criterion for the determination of the absolute instability
line can be based on the difference in the PTV’s temporal
dynamics.
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" FIG. 21. (a) Interface position and (b) PTV’s amplitude at a
fixed location close to the interface in the convectively unstable
region (region II on Fig. 15). (€=0.034 and Re=3.0.)
7=0.707.

The following procedure was used to locate the abso-
lute instability line. For a given Re, we recorded with the
vidicon camera the intensity variations across the column
as a function of time, for successive values of €. The data
were then analyzed in the following way: for each € the
interface position was identified, using the methods that
were described above. The velocity variations in time for
the points in the vicinity of the interface were then
checked for an amplitude modulation. The € value for
which no amplitude modulations were observed along the
column, for a given Re, was identified as the transition
value between the convective and absolute instability re-
gions.

B. Power-spectrum analysis

Another manifestation of the noise influence on the
patterns dynamics in the convectively unstable region is
reflected in the PTV’s power spectrum. The temporal
amplitude modulation that results from the noisy inter-
face dynamics transfers into phase modulation of the
PTV’s near the outlet. The phase noise is manifested in a
noisy power spectrum [19-21]. This observation is
demonstrated in Fig. 22. Plots of the PTV’s velocity am-
plitude as a function of time and their power spectra are
shown, for a value of €=0.0524, in the convectively un-
stable regime and, for a value of €=0.103, in the abso-
lutely unstable regime. In the convectively unstable re-
gion the velocity amplitude and power spectrum are
shown for two locations, near the interface and close to
the outlet. Their power spectra are qualitatively similar,
although the time dependence of velocity amplitude is
different: it is constant near the outlet, but it is irregular-
ly modulated near the interface.

A more important conclusion from the plots is that the
power spectra of the PTV’s in the convectively and abso-
lutely unstable regions are completely different—the
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FIG. 22. Axial velocity of PTV’s vs time and its time spectra.
The data in (a) and (b) are taken in the convectively unstable re-
gion, at €=0.0524: (a) near the interface and (b) close to the
outlet. The data in (c) are taken in the absolutely unstable re-
gion, at €=0.103. The peak frequency in the power spectrum is
©,=10.8. 7=0.707.
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broad peak in the convectively unstable region collapses
to a sharp peak in the absolutely unstable region. This
transition in the power spectrum can serve as another ex-
perimental criterion for identifying the absolute instabili-
ty line [19,20]. We demonstrate the transition in the peak
width in Fig. 23. The width can be characterized quanti-
tatively [20] by the normalized variance of the peak in
the power spectrum o2={(f —(f))2/{f)? The angu-
lar brackets denote averaging over frequencies, which is
obtained by integrating the frequencies in the vicinity of
the main peak in the power spectrum.

The experimental procedure to determine the absolute
instability line was as follows. For a given Re and ¢, the
axial velocity was recorded in time at a spatial point near
the outlet, and sequences of typically 1024 data points,
with 1-s intervals, were Fourier transformed to obtain the
power spectrum. The value of € for which ¢? is minimal,
a value that corresponds to the lowest € value for which
the power spectrum exhibits a sharp peak, was taken to
be an experimental determination for the absolute insta-
bility line.

C. The stability diagram

The complete stability diagram of the system for PTV’s
is presented in Fig. 24. The lower solid line and the lower
solid circles correspond, respectively, to the theoretical
prediction and the experimental determination of the
convective instability line, as described in Sec. VB. The
upper solid line is the theoretical absolute instability line
€,=0.007 89 Re?. The upper solid circles are the experi-
mental data points for the absolute instability line, which
were measured from the transition in the width of the
power spectrum. The solid squares are the data points
for the absolute instability line which were obtained from
the measurements of the interface dynamics. The larger
Re, the closer the interface to the inlet. At Re=~2.5 a
new mode of stationary spirals appears near the inlet
boundary, and an interaction between the PTV’s state
and the stationary spirals takes place. This interaction is
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FIG. 23. The variance of the peak width in the power spec-
trum vs €, at Re=3.0. The transition point is €=0.070+0.005.
(The predicted value is €, =0.071.) =0.77.
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FIG. 24. The stability diagram for the PTV’s. The lower
solid line is the theoretical curve for the onset of the convective
instability and the lower solid circles are the experimental data
points. The upper solid line is the prediction of the GL equa-
tion for the absolute instability line and the solid symbols are
the experimental data deduced from the width of power spec-
trum (solid circles) and interface fluctuations (solid squares).
The solid triangles correspond to €, for Re < 1, which coincide
with €,. The open symbols denote the experimental observation
for the onset of patterns at downstream distances z /d =20 (tri-
angles), 30 (squares), and 40 (circles). The dashed lines are the fit
to Eq. (17), with y =181. Inset: a high-resolution plot for small
values of € vs Re. Typical error bars are shown.

probably another source for the modulation of the inter-
face, which is manifested by the deviation of the solid
squares data points from the absolute instability line.

The values of €, for different positions of the measuring
probe are plotted as the open symbols. (Triangles,
squares, and circles correspond to different downstream
distances z/d =20, 30,40, respectively.) The solid trian-
gles correspond to the values of €, measured [18] for
Re <1, which coincide with the values of €, in this Re re-
gime. The presentation of the data in this form on the
onset of NSS’s was suggested in Ref. [20]. We would like
to point out that this presentation and comparison with
the theory is quantitatively equivalent to the presentation
in Ref. [20] since both approaches are based on the linear
solution of the GL equation.

The observations on the noisy signature of the patterns
in the convectively unstable region make it evident that
these patterns are noise-sustained structures. We will ela-
borate more on the mechanism of creation of these struc-
tures in the following subsection.

D. Mechanism

The existence of patterns in the convectively unstable
region can generally be explained by two mechanisms.
The first is based on a reflection of perturbations from the
lateral walls [2,22] and the second is based on continuous
spatial noise amplification [1]. The picture based on the
reflection mechanism is as follows. Perturbations that
are naturally generated in the system grow exponentially
as exp(€l' /S1y) during propagation along the column.
Upon reaching the outlet boundary a portion r of the
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perturbation’s amplitude will be reflected back to be
amplified again. A balance between the gain due to the
spatial growth and the loss due to the reflection gives an
onset shift for the pattern

e, =7, "'SIn(1/r) . (15)

The region €, <€ <€, is the convectively unstable region,
in which patterns are sustained because of the reflection
from the lateral boundaries. This mechanism was sug-
gested [22] by Cross and was verified experimentally in a
Rayleigh-Bénard convection of a binary mixture [2].

In order to check the possibility of reflection in our
system we generated a single perturbation at € value for
which no patterns exist. The perturbation grew to form a
PTV’s train which traversed the column. Upon reaching
the outlet boundary we did not observe any interference
phenomena (that can be expected as the result of
reflection), and after the last vortex left the system no
reflected waves were left behind. Estimates of our visual-
ization technique resolution gives for the reflection
coefficient a value of r =0.005. The lower onset line in
Fig. 15 corresponds to » =0.0055. This means that if the
shift in the onset were due to reflection it would be ob-
served. Moreover, according to the reflection mechanism
a pattern is sustained in the system because it is partly
reflected from both of the lateral boundaries after being
amplified during advancing towards the boundaries. In
all the experiments that we have performed we have nev-
er observed a pattern that propagated from the outlet to
the inlet, in the direction opposite to the flow. Therefore,
we conclude that the contribution of reflection to the pat-
terns in the convectively unstable region can be con-
sidered as negligible.

The second mechanism to explain the patterns is the
generation of noise-sustained structures in a process of
permanent noise amplification. A perturbation that is
generated spontaneously at the inlet is amplified, grows
exponentially, and is saturated to form a pattern. In the
convectively unstable region, a single perturbation will
eventually be convected away from the system. In order
to have a sustained pattern in the convectively unstable
region an existence of a permanent source of noise in the
system is necessary. The intrinsic noise of the system,
whose origin will be discussed elsewhere [37], can serve as
such a permanent source of perturbations.

The amplitude of the initial perturbation, denoted by
A;, is spatially amplified and the fastest growing mode
grows to an amplitude A4 (z)= A4,exp(Cz), at a distance z
from the inlet. The exponential growth is explained by
the linear spatial growth of perturbations in the convec-
tively unstable region. C can be derived by solving the
linear part of the GL equation (5). The time-independent
amplitude, resulting from a perturbation amplitude A4, at
the inlet, is [1,36]

A(z)= A; exp Ez—[al,/z—\/é‘a—E] ) (16)
0

This equation can be written as a relation between € and
S

e=7,0 1S Iny —(&Iny /T) . (1n

The parameter y = A/ A; is defined as the ratio between
the initial amplitude of a perturbation and the amplitude
of the pattern at z =TI". Thus, for a given S, € should
exceed a threshold value in order to provide sufficient
gain to sustain a structure, in a system with an aspect ra-
tio I'. Equation (17) shows that the threshold for the pat-
tern formation € strongly depends on I'. This is under-
stood by the fact that the larger the aspect ratio, the
longer the time the perturbations grow, and therefore a
smaller € is required in order to reach a saturated ampli-
tude value.

In order to check Eq. (17) we measured €, the value
that corresponds to the onset of patterns in the convec-
tively unstable region for various values of I in a range
1 <Re<4.5, following a previous suggestion and mea-
surements that were carried out by Babcock, Ahlers, and
Cannell [20]. The velocity amplitude that was chosen to
correspond to €, was about 10% from the amplitude
value which was measured after the spatial profile of the
PTV’s state reached saturation. Variation of I can be
done in two ways. One is by changing the working length
of the column by advancing the inlet boundary towards
the outlet, keeping the LDA in a position near the outlet.
The second is by keeping the inlet boundary in place and
changing the position of the LDA along the column. We
used the second method in order not to alter the bound-
ary conditions between measurements for different I'.
Plots of € as a function of Re are shown on Fig. 24 for
different positions of the LDA probe z/d. The circles,
triangles, and squares correspond to z/d =40, 30,20, re-
spectively. The larger z/d is, the larger the spatial
amplification of the perturbation becomes. Therefore the
patterns can be observed at a lower value of €. Using Eq.
(17), all the data points for different z /d can be fitted with
only one fitting parameter, namely, ¥. The dashed lines
in Fig. 24 present the fit by Eq. (17) with y =181. As can
be seen, the agreement between the data and the fit is
very good, which means that the mechanism of noise-
sustained structure can be correctly modeled by Eq. (17).

A simplified expression for the threshold of the pat-
terns € can be obtained for €<<€,. Then one obtains
[19] from Eq. (16) that

& =1 'Sy . (18)

The healing length of the interface for the patterns in the
convectively unstable region is predicted by Eq. (18) to be
inversely proportional to €

L,=1& 'Siny . (19)

This relationship is valid only for the patterns in the con-
vectively unstable region, namely, for Re> 1. In Fig. 20,
presented above, the averaged distance of the interface
from the inlet L, is plotted vs 1/€. The linear depen-
dence, predicted by Eq. (19), is obvious. The general
dependence of L, on € is found by inverting Eq. (17).
One obtains
4 2 172
- %0, ! : (20)

s’

L,=1lr,Shnye ' |1+
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A fit to the data presented in Fig. 20 with Eq. (20) gives
for the amplification ratio ¥y =104. This value of y is
smaller than the one obtained from the fit by Eq. (17).
The discrepancy can be explained by the fact that y de-
pends on L, only logarithmically. The logarithmic
dependence of ¥ on L, and on € makes the estimation of
the noise level in the system, which can be deduced from
the value of y, to be not a very reliable procedure. Fur-
thermore, the large error bars due to the fluctuating in-
terface increase the uncertainty in the determination of
L,.

The process of the continuous noise amplification re-
sults in the generation of a noise-sustained structure with
an interface between the Couette-Poiseuille flow and the
noise-sustained structures, as is demonstrated in Figs.
17-19. The interaction of the noise with the interface
can explain the fact that the amplitude modulations in
the vicinity of the interface are different at different Re
values. As is demonstrated in Fig. 16, the larger Re is,
the larger the amplitude modulation frequency becomes
(or alternatively, the smaller the time between successive
amplitude modulations becomes). This is made clear by
the following picture: increasing Re makes the group ve-
locity, by which the perturbation propagates, larger.
Therefore, the larger Re, the more frequent the interac-
tion of the perturbations with the interface becomes.
Thus, since the perturbations are not correlated, the am-
plitude will be modulated more frequently at larger Re.

E. Frequency selection

The numerical simulations that were carried out by
Deissler [1] on the CGL equation with a boundary noise
have shown that the system selects a unique frequency
out of the uniform spectrum of the noise. This frequency
selection gives rise to a wave-number selection [1].

To demonstrate this frequency selection in our system
we have carried out the following experiment. External
noise with a uniform power spectrum was applied to the
system in the convectively unstable region. The noise
was applied to the inlet boundary by moving the mesh at
the boundary in a random fashion. The details of the ex-
periment are described elsewhere [37]. Before the appli-
cation of the external noise, no patterns were observed in
the column. After perturbing the system, noise-sustained
structures appeared in the system. Pictures of the column
were taken by the vidicon camera at successive time in-
tervals and transferred to the computer. The data of the
light intensity in time, for a given spatial point, were then
Fourier transformed. This analysis was carried out for
the spatial points along the system. In this way the
power spectrum of the axial velocity was obtained along
the column. Figure 25 shows the power spectrum along
the column for Re=4.73 and €=0.029. Near the inlet
boundary the spectrum is uniform due to the generation
of perturbations at the inlet. As the distance from the in-
let is increased to about 7d the uniform spectrum col-
lapses to a single peak, which corresponds to the frequen-
cy wy. @ is the natural frequency of the system, namely,
it is the frequency of the PTV’s that are sustained in the
system at the same Re value, without external noise, and
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FIG. 25. The power spectrum along the column in the pres-
ence of external noise at the inlet boundary, in the convectively
unstable region (region II on Fig. 15). Re=4.73 and €=0.029.
©,=0.565 s~!'=14.6 units of 7,, is the natural frequency of the
system. 7=0.77.

corresponds to the phase velocity of the PTV’s at the
given Re value and k =k, as follows from the linear sta-
bility. (The nominal value of @ is 0.565s'.)

VII. SUMMARY

A detailed study of the Taylor system with an axial
flow in the range up to Re=4.5 was presented in this pa-
per. This system was found to be a convenient system for
the study of instabilities in open flow systems and of the
effect of noise on the formation of patterns in the convec-
tively unstable region.

The methods to measure the convective instability line
were described. The convective instability line was mea-
sured directly by generating a pulse at the inlet boundary
and also indirectly from extrapolation of the PTV’s veloc-
ity amplitude vs € measurements. The experimental loca-
tion of this line was shown to coincide with the theoreti-
cal prediction.

A comparative description of the PTV’s properties in
the convectively and absolutely unstable regions was
presented. In the absolutely unstable region the PTV’s
are characterized as follows.

(i) The PTV’s appear first at the absolute instability
line at Re< 1 (in contrast to the regime Re> 1, where
PTV’s with different spatiotemporal properties appear
first in the convectively unstable region).

(ii) The PTV’s exhibit a spatial profile of the velocity
amplitude. This profile is an interface which separates
the PTV’s state near the outlet from the Couette-
Poiseuille flow near the inlet. The interface is stationary.

(iii) It was found, in accordance with the theory, that
the distance from the interface to the inlet is scaled with
the nondimensional group velocity of the PTV’s for all €
and Re. The healing length of the interface diverges at
the absolute instability line at Re < 1.

(iv) The power spectra of the PTV’s velocity is noise-
free.

(v) The PTV exhibit a unique wave-number selection
at given values of Re of the axial flow. This selection
mechanism is probably related to the front propagating
solution of the CGL solution.
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The PTV’s in the convectively unstable region are
characterized as follows.

(i) At Re>1 the PTV’s are observed first in the con-
vectively unstable region.

(ii) The PTV’s sustained in the convectively unstable
region also exhibit an interface separating the pattern
state from the Couette-Poiseuille flow. The profile, how-
ever, is found to fluctuate. The fluctuations of the inter-
face lead to a modulation of the velocity amplitude near
the interface.

(iii) The healing length of the PTV’s does not exhibit a
general scaling. Instead, the distance from the inlet to the
interface is about inversely proportional to €.

(iv) The fluctuating interface leads to a phase noise
which is manifested in a noisy power spectra of the veloc-
ity amplitude near the outlet, contrary to the noise-free
spectra of the PTV’s in the absolutely unstable region.
The sensitivity of the PTV’s to noise was used as an ex-
perimental criterion to locate the absolute instability line
at Re> 1.

(v) A strong frequency selection and
amplification of perturbations was observed.

All these features of the PTV’s lead us to the con-
clusion that the PTV’s sustained in the convectively un-
stable region are noise-sustained structures, which were
first found in numerical simulations by Deissler [1]. The
mechanism of the NSS’s was identified as a process of a
permanent spatial noise amplification. The interaction of
the noise with the NSS’s leads to a noise modulation of
the PTV’s near the interface and to the noisy power spec-
trum near the outlet. The physical origin of the noise is
the subject of another paper [37].
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APPENDIX A: PARAMETERS OF THE SYSTEM

In this appendix the calculated [20,25] parameters of
the Taylor system with an axial flow are summarized.
The CGL equation that describes our system is

Tl A+SA')=&1+icy) A +EX1+ic,) A"
(A1)
—g(1+ic,)| A%°4 .

The coefficients of the CGL equation (for radii ratio
1n=0.75) are [25]
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S =1.2296Re+5.24 X 10 °Re? ,
70=0.0379—2.42X 10 °Re?+1.11 X 10 ®Re*
£2=0.0725+4.78 X 10 °Re?+2.5X 10 ®Re*,
€p=7.22X1073—2.69X 107 °Re*,
¢, =2.45X10"?Re+4.93X 107 °Re?,
¢,=3.48X107°Re+3.64X 107 'Re’ .

The convective instability line
€,=0.000381 Re?+3.81 X 10 ®Re* .

The absolute instability line
€,=0.007 89 Re?+6.31X 10 °Re* .

APPENDIX B:
CORRELATION ANALYSIS OF PULSES

One of the methods to determine the convective insta-
bility line requires the analysis of pulses which are
developed from a perturbation at the inlet boundary. As-
suming an initial Gaussian perturbation at ¢ =0,
Fy(x,t =0)= A exp(—ax?), the subsequent evolution of
the envelope of the perturbation is given by [1]

exp(&t /7,)
[1+4a(&3/7)t]1?

—a(x —St)?

Fx,n=4 .
[1+4a(Ed/To)t]

b

exp

(B1)

where 7, S, €, and &, are the parameters of the GL equa-
tion.

We have measured the pulse velocity as a function of
time, at a fixed spatial point. A suitable choice for a
function to fit the data with is the following Gaussian
function:

Fp(t)=A; Ay exp[— A3(t — A5 ]sin( A5t + 4,), (B2)

where

A\=(4 /Va)exp(et/ry), A, =V a/[1+4a(E /)] ,

and 4;=w,, the frequency of the PTV’s at the onset.

In order to increase the signal-to-noise ratio the mea-
sured pulse was autocorrelated, using spectral analysis
techniques [38]. The autocorrelation function which was
considered is

C(n=[" Fyt)F(t +7)dt . (B3)

Integrating the right-hand side of Eq. (24), using the ex-
pression for F,(t) in Eq. (B2), yields

C(r)=V'm/8424, exp[—(A3/2)7]
X { cos( A37)— exp[— 43 /243
XCOS(A37'+2A4+2A3A5)} . (B4)

We have found that typically 4;=~0.45 and 4,~0.015.
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The second term on the right-hand side of Eq. (B4) is
therefore of the order of 1077 and can be neglected.
Then, the autocorrelation function which was used for
the fit is

C(T):‘/‘IT_/SA%Az exp[ —(A43/2)r]cos( A7) .

From the fit the parameter 4; was deduced. This pro-
cedure was repeated for a sequence of pulses, each of
which was measured at a different spatial location. These
measurements produced a plot of A4, vs position, as is
shown in Fig. 5.
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FIG. 1. The experimental setup. LDA stands for the laser
Doppler anemometer.



